Electrical and optical properties of Neodymium ions doped P2O5-ZnO-Na2O-Li2O glasses

Electrical and optical properties of Neodymium ions doped P2O5-ZnO-Na2O-Li2O glasses

Authors

  • N.F.Osman Basic Science Department, Modern Academy for Engineering and Technology in Maadi, Cairo, Egypt
  • M.E. Sayed Modern Academy for Engineering and Technology https://orcid.org/0000-0002-4566-9926
  • Mohammad Elokr Physics Department, Facultyof Science, Al-Azhar University, Cairo
  • L.I.Soliman Solid state physics department, Physics Research Institute, National Research Centre, Dokki, Giza
  • Hamdia Zayed Physics Department, Faculty of Women, Ain Shams University, Cairo, Egypt

Abstract

Sodium zinc lithium phosphate glasses doped with Nd3+ were prepared by the melt-quenching method. The optical, structural, and electrical properties of the glass samples were characterized by XRD, density, FTIR and UV-VIS analysis. XRD results revealed that all the samples are amorphous. DTA analysis showed that the transition temperatures of glasses increase with Nd2O3 content. FTIR studies revealed that the glasses consist of Q3, Q2, Q1 and Q0 structural units. The effect of annealing on the absorption coefficient spectra of the samples in the UV-VIS range were studied to evaluate the optical energy gap. The dc, ac electrical conductivity (σdc and σac),and dielectric constants (ε' and ε'') of all the samples have been investigated. Temperature dependence of σdc is found to obey Arrhenius law. With increasing Nd2O3 content σdc increase while the values of the activation energies ΔE1 and ΔE2 decrease. dc conductivity (σdc),and activation energies (ΔE1, ΔE2) were found to be affected by annealing. The ac conductivity follows the power law σac(ω) = Aωs, the exponent s has values between 0.875 and 0.991, consequently, the obtained results have been analyzed by (CBH) model. Conductivity mechanisms for grain resistance at room temperature were discussed using the Cole-Cole plot.

Author Biography

M.E. Sayed, Modern Academy for Engineering and Technology

Education:


PhD
Specialization: Solid State Physics
Awarded by: Faculty of Science, Ain Shams University, 2020.
MSc
Specialization: Applied Nuclear Physics
Awarded by: Faculty of Science, Ain Shams University, 2014.
BSc
Specialization: Special Physics
Awarded by: Faculty of Science, Ain Shams University, 2006.


Positions Occupied and work experience


1- Working as a lecturer of Math and Physics for two years at EL-Sherouk Academy.[2006-2008]
2- Working and still as teaching assistant of Physics and Mechanics at Modern Academy for Engineering and technology. [2008 - 2014]
3- Working and still as a teacher assistant of Physics and Mechanics at Modern Academy for Engineering and technology. [2014 - 2020]
Training Courses:
 Course title:
1- Chemical Separation of Uranium to be measured by Laser Flourimetry
2- Gamma-Ray Spectroscopy with NaI (Ti ( and Ge (Li) Detectors
3- Efficiency Calibration for low Background Gamma-Ray Spectrometers
4- Natural Radioactivity and Natural Radiation Sources
5- Dose Assessment
6- Scintillation Counter
Location: Atomic Energy Authority, National Center For Nuclear Safety And Radiation Control
Date: 20/9/2004
 ICDL Certificate 2008.
 TOEFL, 2009.
 Training of Trainer (TOT), 2014.
 Use of Technology in Education, 2015.
 Advanced Arduino and Raspberry PI Course, 2015.
 Egyptian Engineering Day, 2015.
 American society for mechanical engineering « Student Professional Development Conference », 2016.
 International publication course for scientific research, 2017.
 Introduction to Elsevier’s engineering solutions, 2020.

References

S. W. Martin, Ionic Conduction in Phosphate Glasses, J. Non-Cryst. Solid State Inorg. Chem. 28 (1991)163 205.https://doi.org/10.1111/j.1151-2916.1991.tb07788.x

R. K. Brow, the structure of simple phosphate glasses, J. Non-Cryst. Solids 263-264 (2000) 1-28.https://doi.org/10.1016/S0022-3093(99)00620-1

Yahia H. Elbashar, Ali M. Badr, Haron A. Elshaikh, Ahmed G. Mostafa, Ali M. Ibrahim, Dielectric and optical properties of CuO containing sodium zinc phosphate glasses, Processing and Application of ceramics 10 (4) (2016) 277-286.http://www.doiserbia.nb.rs/Article.aspx?id=1820-61311604277E

D. D. Ramteke, R. E. Kroon, H. C. Swart, Infrared emission spectroscopy and upconversion of ZnO-Li2O-Na2O-P2O5 glasses doped with Nd3 + ions, J. Non-Cryst. Solids 457 (2017) 157-163.https://doi.org/10.1016/j.jnoncrysol.2016.12.006

Dongemi SHI, YinggangZHAO,Spectroscopic properties and energy transfer of Nd3+/Ho3+-doped Ga2O3-GeO2 glass by codoping Yb3+ ion, J. Rare Earths 34 (4) (2016) 368-373.https://doi.org/10.1016/S1002-0721(16)60035-2

C.E. Smith, R. K. Brow, The properties and structure of zinc magnesium phosphate glasses, J. Non-Cryst. Solids 390 (2014) 51-58.https://doi.org/10.1016/j.jnoncrysol.2014.02.010

K. Aida, T. Komatsu, V. Dimitrov, Thermalstability, electronic polarisability and optical basicity of ternary tellurite glasses, Phys. Chem. Glasses 42 (2) (2001) 103-111.

ArnaudQuintas, Daniel Caurant, OdileMajérus, Pascal Loiseau, ThibaultCharpentier, Jean-LucDussossoy,ZrO2 addition in soda-lime aluminoborosilicate glasses containing rare earths: Impact on rare earths environment and crystallization, J. Alloys Compd. 719 (2017)383-391.https://doi.org/10.1016/j.jallcom.2017.05.211

L. Vijayalakshmi, K. Naveen Kumar, G.Bhaskar Kumar, Pyung Hwang, J. Non-Cryst. Solids, 475 (2017) 28-37.https://doi.org/10.1016/j.jnoncrysol.2017.08.024

V. C. VeerannaGowda, Effect of Bi3+ ions on physical, thermal, spectroscopic and optical properties of Nd3+ doped sodium diborate glasses,Phys. B. 426 (2013) 58-64.https://doi.org/10.1016/j.physb.2013.06.007

M. Shwetha, B. Eraiah, Influence of Er3+ ions on the physical, structural, optical, and thermal properties of ZnO-Li2O-P2O5 glasses, App. Phys. A (2019) 125-221.https://doi.org/10.1007/s00339-019-2775-6

AkshathaWagh, Y. Raviprakash, VyasaUpadhyaya, SudhaD. Kamath, Composition dependent structural and optical properties of PbF2– TeO2–B2O3–Eu2O3 glasses, Spectrochim.Acta A 151 (2015) 696-706.https://doi.org/10.1016/j.saa.2015.07.016

V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength (review), J. Univ. Chem. Technol. Metall. 45 (2010) 219-250.

Xinyu Zhao, Xiaoli Wang, Hai Lin, Zhiqiang Wang, Electronic polarizability and optical basicity of lanthanide oxides, Phys. B 392 (2007) 132-136.https://doi.org/10.1016/j.physb.2006.11.015

El SayedYousef, M.M. Elokr, Y.M. AbouDeif, Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er3+ions, J. Mol. Struct. 1108 (2016) 257–262.https://doi.org/10.1016/j.molstruc.2015.11.066

F. Wang, Q.L. Liao, Y.Y. Dai, H.Z. Zhu, Properties and vibrational spectra of iron borophosphate glasses/glass-ceramics containing lanthanum, Mater. Chem. Phys. 166 (C) (2015) 215-222.https://doi.org/10.1016/j.matchemphys.2015.10.005

Haijian Li, Xiaofeng Liang, Cuiling Wang, Huijun Yu, Zhen Li, Shiyuan Yang, Influence of rare earth addition on the thermal and structural stability of CaO-Fe2O3-P2O5 glasses, J. Mol. Struct. 1076 (2014) 592-599.https://doi.org/10.1016/j.molstruc.2014.08.032

Yanling Liu, Feng Song, GuozhiJia, Y. Zhang, Yanbang Zhang, Yi Tang, Strong emission in Yb3+/Er3+ co-doped phosphate glass ceramics, Results in Physics 7 (2017) 1987-1992.https://doi.org/10.1016/j.rinp.2017.06.023

ParamjyotKumarJha, O. P. Pandey, K. Singh, Structure and crystallization kinetics of Li2O modified sodium-phosphate glasses, J. Mol. Struct. 1094 (2015) 174-182.https://doi.org/10.1016/j.molstruc.2015.03.066

C. Dayanand, G. Bhikshamaiah, V. Jaya Tyagaraju, M. Salagram, A.S.R. Krishna Murthy, Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1−x) P2O5 vitreous system, J.Mater. Sci. Lett. 31 (1996) 1945-1967.

Y. M. Lai, X. F. Liang, S. Y. Yang, J. X. Wang, L. H. Cao, B. Dai, Raman and FTIR spectra of iron phosphate glasses containing cerium, J. Mol. Struct. 992 (1-3) (2011) 84-88.https://doi.org/10.1016/j.molstruc.2011.02.049

G.V. Rao, H. D. Shashikala, Structural, optical and mechanical properties of ternary CaO-CaF2-P2O5 glasses, J. Adv. Ceram. 3(2) (2014) 109-116.

Ray L. Frost, Yunfei Xi, Ricardo Scholz, Fernanda Maria Belotti, Mauro CândidoFilho, Infrared and Raman Spectroscopic Characterization of the Phosphate Mineral Leucophosphite K(Fe3+)2(PO4)2(OH) · 2(H2O), Spect. Lett. 46 (2013) 415-420.https://doi.org/10.1080/00387010.2012.733478

Yoshiaki Tsunawaki, Analysis of CaO-SiO2 AND CaO-SiO2-CaF2 glasses by Raman Spectroscopy, J. Non-Cryst. 44 (1981) 369-378.https://doi.org/10.1016/0022-3093(81)90039-9

S. M. Abo-Naf, M. S. El-Amiry, A. A. Abdel-Khalek, FT-IR and UV–Vis optical absorption spectra of γ-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3, Opt. Mater. 30 (6) (2008) 900-909.https://doi.org/10.1016/j.optmat.2007.03.013

F. H. Elbatal, Gamma ray interaction with copper-doped sodium phosphate glasses, J. Mater. Sci. 43 (3) (2008) 1070-1079.

F. H. Elbatal, M. A. Marzouk, A. M. Abdelghany, UV–visible and infrared absorption spectra of gamma irradiated V2O5-doped in sodium phosphate, lead phosphate, zinc phosphate glasses: A comparative study, J. Non-Cryst. Solids 357 (3) (2011) 1027-1036.https://doi.org/10.1016/j.jnoncrysol.2010.11.040

N. SoorajHussain, M.A. Lopes, J. D. Santos, A comparative study of CaO–P2O5–SiO2 gels prepared by a sol–gel method, Mater. Chem. Phys. 88 (1) (2004) 5-8. https://doi.org/10.1016/j.matchemphys.2004.06.015

J.I. Pankove, Optical Processes in Semiconductors, New Jersey, Prentice-Hall, 1971.

J. Tauc, Amorphous and Liquid Semiconductors, New York: Plenum Ch. 4, 1974.

A.F. Qasrawi, Refractive index, band gap and oscillator parameters of amorphous GaSe thin films, Cryst. Res. Technol., 40 (6) (2005) 610-614.https://doi.org/10.1002/crat.200410391

F. Yakuphanoglu, M. Arslan, The fundamental absorption edge and optical constants of some charge transfer compounds. Opt. Mater. 27 (1) (2004)29–37.https://doi.org/10.1016/j.optmat.2004.01.017

P. Chimalawong, J. Kaewkhao, C. Kedkaew, P. Limsuwan, Optical and electronic polarizability investigation of Nd3+-doped soda-lime silicate glasses. J. Phys. Chem. Solids 71 (7) (2010)965–970.https://doi.org/10.1016/j.jpcs.2010.03.044

S.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4 (2012)25–35.

Pankove, J I 1975 Optical Processes in Semiconductors (NewYork: Dover) p 91.

M. J. Miah, A. K. M. AktherHossain, Magnetic, Dielectric and Complex Impedance Properties of xBa0.95Sr0.05TiO3–(1 − x)BiFe0.9Gd0.1O3Multiferroic Ceramics, Acta Metall. Sin. (Engl. Lett.) 29 (6) (2016) 505-517.

D. P. Almond, C. C. Hunter, A. R. West, The extraction of ionic conductivities and hopping rates from a.c. conductivity data, J. Mater. Sci. 19 (10) (1984)3236-3248.

M. E. Sayed, M. M. Elokr , L. I. Soliman , H. A. Zayed, Synthesis and characterization of Li2O modified sodium phosphate glasses, J. Sci. Res. Sci. 35 (2018) 417- 437. https://doi.org/10.21608/jsrs.2018.25524

G.E. Pike, ac Conductivity of Scandium Oxide and a New Hopping Model for Conductivity, Phys. Rev. B6 (1972) 157.https://doi.org/10.1103/PhysRevB.6.1572

D. Değer, K. Ulutas, Conduction and dielectric polarization in Se thin films, Vacuum 72 (3) (2003) 307-312.https://doi.org/10.1016/j.vacuum.2003.08.008

R.H. Chen, Chen-Chen Yen, C.S. Shern,T.Fukami, Impedance spectroscopy and dielectric analysis in KH2PO4 single crystal, Solid State Ionics 177 (33-34) (2006) 2857-2864.https://doi.org/10.1016/j.ssi.2006.05.053

Sh. A. Mansour, I. S. Yahia, G. B. Sakr, Electrical conductivity and dielectric relaxation behavior of fluorescein sodium salt (FSS), Solid State Communications 150 (29-30) (2010) 1386-1391.https://doi.org/10.1016/j.ssc.2010.04.029

E.Abd El-Wahabb, M.M. Abd El-Aziz,E.R. Sharaf, M.A. Afifi, AC conductivity and dielectric properties of GeSexTl0.3 amorphous thin films, J. Alloys Compd.s 509 (34) (2011) 8595-8600.https://doi.org/10.1016/j.jallcom.2011.06.038

Downloads

Published

2022-10-23

Issue

Section

Engineering Mathematics, Physics, and Chemistry.